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The historical Ehrenfest model dating back to 1907 describes the process of
equilibration together with fluctuations around the thermal equilibrium. This
approach represents a special case in the dynamics of N uncoupled two-state
systems. In this article we present a generalization of the original model by
introducing an additional parameter p which denotes the probability of a sin-
gle state change. Analytical solutions for the probability distribution of the
system’s state as well as the fluctuation distribution are derived. Interestingly,
close inspection of the fluctuation distribution reveals an intrinsic time scale.
Sampling the system’s state at much slower rates yields the familiar macro-
scopic exponential distribution for equilibrium processes. For faster measure-
ments a power law extends roughly over log;y N orders of magnitude followed
by an exponential tail. At some point, further increases of the sampling rate
merely result in a shift of the fluctuation distribution towards higher values
leaving plateau at small fluctuation sizes behind. Since the generic solution is
rather unwieldy, we derive and discuss simple and intuitive analytical solutions
in the limit of small p and large N. Furthermore, we relax the quantization of
time by considering a complementary approach in continuous time. Finally we
demonstrate that the fluctuation distributions resulting from the two different
approaches bear identical characteristic features.
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INTRODUCTION

The flea model by Ehrenfest(!:?) essentially describes the jumps of N fleas
between two dogs. In each time step a single randomly selected flea jumps
on the other dog. The more fleas there are on a dog, the more will
jump off it. In the long time limit and in absence of external tuning, the
mean number of fleas on each dog approaches the equilibrium value N /2.
Thus, the Ehrenfest model describes the details of the equilibration process
together with fluctuations around the thermal equilibrium.

The relevance of such slow leveling processes for the power law
behavior of self-organizing systems has been emphasized and quanti-
fied in earlier works.®*# In particular, the model proposed in® essen-
tially reduces to the Ehrenfest model. To put this in a more general
context, we consider the generic dynamics of N uncoupled two-state
systems. Despite their abundance in nature and widespread physical rel-
evance (we just mention stochastic resonance with applications to
bistable systems as lasers and optical traps, see review® and references
therein) we were unable to find this straightforward generalization in the
literature.

In the original model, Ehrenfest assumed that in each time step
exactly one flea jumps. This rather restrictive assumption had the fortunate
tradeoff to yield simple solutions. Here we demonstrate that an analytical
solution is still attainable in the more general case where all fleas jump
with a certain probability p. At the same time this represents an impor-
tant step towards relaxing Ehrenfest’s assumption of discrete time events.
From this formulation we can not only recover the original model for par-
ticular jump probabilities p but also derive a continuous time formulation.

THE MODEL

Suppose that dog A is harassed by N4 fleas and dog B by
Np=N — Ny4. In every time step each flea jumps with a probability p to
the other dog and remains on its victim with 1 — p. In the long run, the
average flea load is equal for each dog N4 = Np=N/2. But their num-
bers fluctuate over time. A single fluctuation is defined as a process that
starts once N4 becomes larger than N/2 and stops when it gets back to
it for the first time. The same holds for Ng. Thus, the end of one fluctu-
ation specifies the start of the subsequent one. For simplicity, we assume
N even throughout the text. For N odd, the definition of the fluctuations
has to be changed accordingly. The duration or length A of a fluctuation
is determined by the number of time steps elapsed until the fluctuation
ends.
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Let us first determine the time evolution of the probability to find Ng4
fleas on dog A which is determined by a master equation:

N
PTH(NA)=Y"an,nP"(n) 0]
n=0

with

p n—NA
v == (727)

Na 2i
XZ Ny N —Ny p

= i n—Na+i/\1-p) ~’

=

where ay, , specifies the transition probability from n fleas on dog A at
time t to N4 in the next time step. Note that throughout the article bino-
mial coefficients with negative entries are assumed to be zero.

Surprisingly, this rather awkward equation is easily solved when
returning to the picture of N uncoupled two-state systems. Each such sys-
tem consists of a single flea sitting on either dog. The probability p to
switch dogs is simply the transition probability between the two states.

For a moment, lets consider only a single flea: Q7(s) denotes the
probability to find the flea on dog s at time . For convenience we choose
s €{0, 1}. The dynamics of this one-flea-system is then given by another
master equation:

0" (s)=(1-p)O"(s)+pO*(1—5).
It follows that
0" () — 0" 1 —s)=1-2p)"[0%s) — 0°(1 — )],
and finally
1
0 (=5[1-1-2p)]+0 —2p)"0%s),

where we used the fact that the flea must reside on either dog, i.e.
07 (s)+ Q7 (1 —s)=1. Thus, the probability to find a particular system in
state 1 (on dog A, say) at time 7 is then given by:
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qo(r) = = (1-(1-2p)7),

q1(7) =

N =N =

(1+1—2p)7). @)

where ¢;(t) applies depending on the initial state i = 0, 1. Obviously
> ;gi(t)=1 holds since each flea must have originated in either one of the
dogs.

Equipped with Eq. (2), we return to N fleas. Assuming that initially
Ng fleas were sitting on dog A, the solution of Eq. (1) can be readily
derived. We simply have to add up all possibilities to end up with N4 fleas
at time v when starting with Ng. Using the time dependent probabilities
of Eq. (2) we obtain:

Na oo | |
PIfIg(NA) = ZO (l]VA > QI(T)I(l _ql(‘l,'))N?x*l
" <%A__Iig > Qo)A (1 = go(x))N-NA-Nati
o (20"
q1(1)

Na 2i
N\ (N=NY\ (q1(D)
Xg(iA)(NA—iA)(qo(r)> ' ®

Note that i out of the N4 fleas originate from dog A and the remain-
ing Ny —i fleas from dog B. In the long time limit T — co we obtain the
expected binomial distribution which is independent of the initial condi-
tion Ng:

PEN)=2" (%A) . )

From Egs. (3), (4) and the well-known mirror-method® (see Fig. 1) the
fluctuation distribution D(A) is obtained. First we need to derive the prob-
abilities that in the next time step a new fluctuation starts or the current
ends. Using the mirror-method we then determine all allowed trajectories
connecting the starting and ending points of a fluctuation of given length
A. Finally, the weighted sum over all trajectories yields D(A).

In order to keep things simple, we assume that the system has reached
its equilibrium distribution P*°(N,4) at time 7 = 0. Consequently, the
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Fig. 1. The mirror method: A indicates a valid path, connecting No=N/2+a and N/2+b.
BC represents a forbidden path because it crosses N/2. However note that each such path B

has a counterpart of equal probability B’ starting in No=N/2—a.

probability for the start of a new fluctuation at r =1 with initial size a
is given by

N/2

f@=Y_Py(N/24+a)P™(). )

a’=0

Similarly, the probability that the current fluctuation with No=N/2+b
ends in the next time step is given by

N/2

gb)=)_ PYp,(@). (6)

a’=0

To connect the start and end points of one fluctuation, we have to deter-
mine all valid trajectories and their probabilities. This means we consider
all paths starting in No=N/2+a at time t=1 with a€{l,..., N/2} and
ending in Ny =N/2+b at time 7 =X — 1 which do not cross N/2. This
probability is calculated by the mirror method (see Fig. 1). It states that
each invalid path has a counterpart of equal probability starting in Ny =
N /2 —a. Therefore we consider all paths and subtract the invalid ones, i.e.
those starting in N4 =N /2 —a. The corresponding probabilities are simply
given by Eq. (3). Finally, we sum over all starting and ending points a and
b weighted by the corresponding frequencies f(a) and g(b):

N/2NJ2

DM =23 f@ (P2, = Pi7 ) g, ()

a=1b=0



1458 Hauert et al.

Q R R — analytical solution
R —&— small p approximation
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Fig. 2. Fluctuation distribution derived by numerical evaluations of Eq. (7) for N = 100
fleas and different jump rates p (solid lines). Generally, the distribution is divided into three
regimes: a flat plateau for small A, an intermediate range governed by a power law and an
exponential tail for large A. Decreasing p essentially shifts the distribution towards larger
fluctuation sizes while increasing the plateau. (A) indicate an approximation derived in the
limit of small p (see Eq. (17)). The quality of the approximation obviously increases with
decreasing p. (¢) denote another approximation derived in the continuum limit N — oo (see
Eq. (20)). However, the plateau occurring for finite N is missing. All distributions have an
arbitrary normalization such that D(2)=1.

for A >2. The factor two in Eq. (7) results from the symmetry of the sys-
tem. Numerical evaluations of Eq. (7) are shown for different jump rates
p in Fig. 2 and different numbers of fleas N in Fig. 3. Both figures clearly
show three distinct regimes of D()):

(1) For small A<1/(pN) a plateau is observed and D(1) remains
approximately constant. We will argue that this region contains little infor-
mation and results from the time resolution of the measurement.

(i) For intermediate lengths 1/(pN) <A <1/p a power law distribu-
tion is observed indicating scaling invariance of the fluctuation lengths.
The width of the power law regime scales with the system size N and
roughly extends over log;y N orders of magnitude.

(iti) For large A 2 1/p the distribution has an exponential tail due to
finite size effects. In the limit N — oo this tail vanishes.
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Fig. 3. Fluctuation distribution derived through numerical evaluations of Eq. (7) for differ-
ent numbers of fleas N and jump rates p=0.1/N. The power law regime of the distribution
clearly scales with N and roughly extends over log;, N orders of magnitude. All distributions
have an arbitrary normalization such that D(2)=1.

Figure 2 demonstrates that decreasing the jump rate p with N = const.
essentially results in a shift of D(A) to larger fluctuation sizes while
increasing the plateau. Note that changes of p correspond to a linear
transformation of the time resolution of the measurement At — At/pN.
Thus, the model has an intrinsic time scale defined by At ~1/pN. Mea-
suring the state at this rate results in complete information on the dynam-
ical properties and no plateau is observed (c.f. Fig. 2 for N=100 and p=
1/N =0.01). Increasing the measurement rate to At<1/pN only results in
an increased plateau for small A. On the other hand, for slower measure-
ments with At 2> 1/pN information is lost and eventually we are left with
the exponential tail. Consequentially, power law behavior of fluctuations
may be observed in any leveling process for appropriate time resolutions.

Qualitatively similar observations were made in an experimental setup
measuring the avalanche distributions in rice piles’-®. The measured dis-
tributions crucially depend on the geometrical properties of the rice grains,
i.e., their friction. For large frictions, related to small jump rates p, a
power law distribution including a plateau is observed, while small fric-
tions, corresponding to larger p, resulted in a (stretched) exponential dis-
tribution.
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CONTINUOUS TIME

The somewhat artificial discretization of time in the Ehrenfest model
can be avoided ab initio by assuming a probability density function

ft)=ke ™" ®)

which determines the jump probability of a single flea, i.e. in the time
interval dt the flea jumps with probability f(¢)dt, and satisfies the normal-
ization condition fooo f(@)dt=1. The constant k relates to the half-life of a
flea on one dog and is thus related to the jump probability p in discrete
time. As a first step, we need to derive the probability P,(t) that a sin-
gle flea jumps exactly n times up to time 7. Therefore we split the interval
[0,7] into M equal subintervals. For sufficiently large M, i.e. in the limit
M — o0, the flea either stays in place or makes a single jump in every sub-
interval. The jump probability during each subinterval is given by:

t/M
/O f)dr=1—e XM, 9)

Putting this together to get exactly n jumps in the M intervals yields

) (i\/[) (1 _e—kt/M>n (e—kr/M>M’”
M—o00

— ¢ Iim <M> (ekf/M — 1)”
M—oco \ N

—kt ' o0

(kt)! M~/
=1

Il
3

Pu (1)

e

lim ————
n! M—oo (M —n)! | 4
j

where P=M!/(M —n)! represents a polynomial in M of order n. The limit
M — oo eliminates all terms involving O(M"~!) of P:

—kt

Py(1)=— (k)" (10)

n!

Now we are ready to derive a counterpart to Egs. (2) in continuous time
by noting that finding a flea on one dog (state 1) at time ¢ requires an even
number of jumps if the flea sat initially on that dog (state 1) and an odd
number of jumps if the flea was on the other dog (state 0) at r=0:
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a5 =Y Puii(t)= % (1 — e—z’“) :

n=0
() = ZPZn(t):% (14e72). (11)
n=0

The upper index in ¢ (t) marks that these formulas refer to the continu-
ous time formulation.

In order to simplify comparisons between the discrete and continuous
approach, we set k= —% log(1—2p) with 0<p< % This converts Egs. (11)
into

(1-1-2p)),

(14 (1-2p)) (12)

qq(1) =

N = =

qi(t) =

which are formally equivalent to Eqs. (2). From this it is straight forward
to derive the analogue to Eq. (3) in continuous time:

0
. g\ VAN
vag (Na) = g5 <m>
Na c 2i
) (3 (410)
L GIHGE) - o

Equipped with Eq. (13) we are now able to derive the fluctuation distri-
bution D¢(/) in continuous time following a similar line of argument as
in discrete time. Assume that the system is in equilibrium with Ng=N/2.
Further, let us for a moment focus our attention on fluctuations that are
accompanied with states on the right half plane, i.e. N/2<N4 <N only.
As soon as one additional flea reaches dog A another avalanche starts. But
note that in each infinitesimal time interval dr at most a single flea jumps.
Thus, the initial size of an avalanche in continuous time is always 1, i.e.
all avalanches start with N/2+ 1. For the same reason, an avalanche that
is about to end will also have size 1, i.e. Na4=N/2+1. Assuming that the
avalanche started at time ¢t =0 we now need to determine the probability
that the system is again in state N/2+1 at time ¢t =/ without reaching N /2
before, i.e. that an avalanche of length / has occurred. This is again accom-
plished by the mirror method:

Dehy=Cnp (Pl (N/24 1) = Plyy ((N/24 1)), (14)
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where Cy,, accounts for the probability that the avalanche actually ends
after reaching N/2 + 1 at time [, i.e. the transition probability N/2 +
1 — N/2, as well as a factor 2 arising from the symmetry of the sys-
tem. It is important to note that Cy , is independent of the duration
of the avalanche and is hence determined by the normalization condition
Jo° De(Ddl=1.

Due to the formal equivalence of Eq. (3) and Eq. (13) the corre-
sponding fluctuation distributions for the time continuous case Fig. 2 and
Fig. 3. are essentially identical to those depicted in Fig. 2 and Fig. 3 for
discrete time (not shown).

APPROXIMATIONS

In discrete time the exact analytical solution (7) is unfortunately quite
unwieldy. Thus, aiming at simple and intuitive representations, we derive
two approximations of Eq. (7) by first considering the limit of small p and
then turning to the continuum limit N — co.

Small Jump Rates

The original master Eq. (1) is greatly simplified in the limit of small
jump rates p < 1/N. In this case, we may assume that at most one flea
jumps per time step and Eq. (1) becomes:

P (N4) = p(Na+ 1P (Na+1)
+p(N—Ny+ DPT(Ny—1)
+(1 = pN)PT(Na). (15)

Upon setting p=1/N Eq. (15) reduces to the original Ehrenfest model
with well-known analytical solutions for P7(N4) and D(x)®. However,
following Kac® (see appendix) the more general case Eq. (15) for arbi-
trary p can be solved for the initial condition PO(N4)=8(Ny —Ng):

N
0. _ T j AN—N
PT(Na)=(=DNMa2™N % a—2pjyTey, ¢ (16)

j=0

where the Ck' ’s are defined through the identity

N
=D/ +D¥ T =) "l
k=0
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The fluctuation distribution D(A) is derived as before by applying the
mirror method and setting a=b=1:

pEN(N +2)
2
x (Pi2 (N2= D = P2 (N2= D).

D'\ =

Inserting Eq. (16) yields
D/()\.) — pZN(N+2)(_1)N/2+12—N—1

N
XZ(l_Zp]))LC]]\//zfl I:C;V/2+1_C5V/271] (17)
j=0

for N even, A>2 and 0 < p <1/N. For small jump rates p Eq. (17) is
a very good approximation to the general solution Eq. (7) as shown in
Fig. 2.

Continuum Limit

Another and more elegant approximation is obtained in the contin-
uum limit N — oo and for small p. Introducing the scaling variables x, ¢, g
and the probability density f(x, 1)

x = (Nys—N/2)/v/N,
t=1/N,

q = pN,
fx,t1) = NP"(Ny)

Eq. (15) leads to a Fokker—Planck equation:

& f(x,t)=¢q <%8§+28xx> fx,0). (18)

Eq. (18) describes a random walker in a parabolic potential V (x)=gx>.
The solution of Eq. (18) is found in the literature, given that the system
was in state xg at time ¢t =0, i.e. f(x,0)=38(x —xq):

_ —2q1t\2
- _ (e —xge2) ) 19)

_
fr=—=0( exp( s
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with
o) = I (1 — ef4q’)
3 .

The fluctuation distribution D(/) with [=A/N then specifies the probabil-
ity that the random walker in V(x) leaves the origin x =0 at time ¢ and
returns for the first time at r +/. Note that D(l) corresponds to the time
evolution of the flux leaving the system at an absorbing boundary in x =0.
A solution of Eq. (18) with an absorbing boundary in x =0 is generated
by differentiating Eq. (19) with respect to xo®. Using the continuity equa-
tion we then calculate the flux j(x,?) in x =0:

j(x,r)z—/a,g(x,t)dx.

This finally leads to D(/) for fluctuations starting in x =0 at time ¢t =0 and
ending in x=0 at t=1:

_3
D)= \/g (1 - e—“q’) 2 =24l (20)

denoting a power law distribution with an exponential tail due to finite
size effects. D(I) becomes exact and a pure power law for N — co. At
the same time, Eq. (20) is incapable of reproducing the plateau for small
[. However, note that from Eq. (17) follows that for [ < 1/(gN) (or A K
1/(pN)) the fluctuation distribution remains approximately constant, i.e.

const. if 1<S1/(gN)

D 3
()O({ (1—e %) 3 20 if 1> 1/(gN)

which resembles a low pass filter (see Fig. 2).

DISCUSSION

The Ehrenfest model describes the equilibration process and fluctua-
tions in thermal equilibrium of N uncoupled two-state systems under the
rather artificial and restrictive assumption that in each time step exactly
one state change occurs. In the present article we relax this assumption
by introducing the parameter p which denotes the probability of a state
change for each two-state system. In this generalized framework, Ehren-
fest’s model represents a special case for p=1/N. Despite the additional
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complications, analytical solutions for the probability distribution and the
corresponding fluctuation distribution are still attainable.

The fluctuation distribution generally shows three distinct regimes: (a)
a plateau for small fluctuations, (b) a power law regime for intermedi-
ate and (c¢) an exponential tail for large fluctuations. However, the power
law regime is observed only for sufficiently small jump rates p<1/N. Its
width scales with N and extends roughly over log;q N orders of magni-
tude. Larger p leave only the exponential tail while smaller p increase the
size of the plateau.

An equivalent condition for observing power law behavior in any lev-
eling process refers to the required resolution of measurements:
At ~1/pN. Slower sampling rates would reveal only the exponential tail
- in accordance with macroscopic equilibration processes - while higher
rates do not lead to more accurate information but merely produce larger
plateaus.

The Ehrenfest model and its more general variant are essentially
equivalent to a random walk in a parabolic potential. In the former case
the walker makes a step to the left or right with certainty while in the
latter he remains in place with probability 1 —2p. The potential not only
drives the walker back to the origin, i.e. the system to its equilibrium state,
but it also explains in a natural way the exponential tail of the fluctuation
distribution arising from finite size effects.

Apart from simple and intuitive approximations in the limit of small
p and large N we provide a complementary approach in continuous
time producing identical characteristic features of the fluctuation distribu-
tion.

Two state systems, where these effect should be observable, are abun-
dant in nature®. We just mention Ising magnets in the paramagnetic state
where deviations of the magnetization from zero should display fluctua-
tions whose durations are distributed with a power law - at least for suf-
ficiently fast measurements.

APPENDIX: SOLUTION OF THE SIMPLIFIED SYSTEM

In order to derive a solution for Eq. (15), i.e. in the limit of small p,
we follow the approach of Kac® to solve the original Ehrenfest model.

The initial condition for the probability distribution is given by
PO(N4) =8(Ny —Ng), where Ng specifies the number of fleas on dog A
at time 7 =0 and & denotes the Kronecker delta.

To find P*(N4), we use the method of Markov chains. Let (p); be
the vector
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PT(0)
PT(1)
(p)rz

PT(N)

at time 7 and A the (N +1) x (N 4+ 1) matrix

1—pN p 0 .0

pN 1—-pN 2p 0

0 p(N—-1)1—-pN 0
A=]0 0 p(N=2) 0

0 0 0 ...1=—pN

Thus, the master equation Eq. (15) can be written in matrix form as

(P)er1=AP):

and it follows that

(P)r=A"(p)o 1)

where the vector (p)o represents the initial condition with all zeros except
the Ngth component which is one. PT(N,) is then the element (Ny, Ng)
of AT.

The matrix A can be diagonalized as follows:

A0 ...0
0 A 0
A=P]| . . 0,

: . 0

00 ...xyn
where PQ=1 and A; being the N 41 eigenvalues of the matrix A. Using
Eq. (21) we calculate the right and left eigenvectors. Let co¢ct ...,cVN
be the right and «g, o1, ..., ay the left (normalized) eigenvectors to the ei-
genvalues Ag, A1, ..., An, respectively. For j=0,1,..., N we then have

ACT =;C,

T
A Olj =Ajocj,
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where AT denotes the transpose of A. The orthonormalization condition
reads

Clay=8(j,k), (22)

where 8(j, k) denotes Kronecker’s delta. The eigenvalues A; and the cor-
responding right eigenvectors are determined by a system of N + 1 linear
equations:

Ag=p(N—k+Dxp_1+(A — pN)xp + (k+ 1) pxp41, (23)

with £k =0,1,...,N. To solve Eq. (23), we use the method of generat-

ing functions. Multiplying the members of Eq. (23) by 1,z,z%,...,z", and

summing up, we obtain
N N
pY (N—k+Dxiz+) (1— pNyxezt
k=1 k=0

N N
+p Z(k + l)xk+1zk =A Zxkzk.
k=0 k=0

Introducing the abbreviation

N
f@)= Z xi 2k
k=0

we get

A—=1+pNA-2)
p(1—22)

fl@= f @),

which is a linear differential equation for the generating function f(z). It’s
solution reads

A=142pN

F@O=xo(=D T G—1)% @+1)

and satisfies the condition f(0)=xy.
The N +1 eigenvalues of A are now easily obtained:

rj=1-=2pj, for j=0,1,...,N.
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Since f(z) is a polynomial of degree N, it follows that the components of
the right eigenvectors Cj,C{,...,C} to the eigenvalues A;=1—2pj are
defined by the identity

N
=/ E+D¥ =)l (24)
k=0

In order to calculate the left eigenvectors a]]‘. we use of Eq. (22) such that

N N N i
=Y s =3 (Ll )
r=0

r=0 \k=0
N /N
= a}i <Zcfzr)
k=0 r=0
Using Eq. (24) yields
M=\
T=@+DVY ol [—) . 25
=z )Z“k<z+1> (25)
k=0
Let
z—1
S——H_l,

then Eq. (25) reads in terms of &:
N . . .
> algt =2 Na+e)/1-)N . (26)
k=0
Comparing Egs. (26) and (24) we get
aljz(—l)N_k2_NC§v_k. (27)

Finally, the solution of the master equation Eq. (15) is obtained from
Eq. 21):

N
. _n0
PT(No) = (=D NNy (1 —2jp)c), ¢ M (28)

j=0



Of Dogs and Fleas: The Dynamics of N Uncoupled Two-State Systems 1469

ACKNOWLEDGMENTS

We thank an anonymous referee for pointing out the continuous time

approach based on Eq. (8). Ch.H. acknowledges support of the Swiss
National Science Foundation 8220-64682.

REFERENCES

1.
2.

R NV o)

P. and T. Ehrenfest, Phys. Z. 8:311 (1907).
H.G. Schuster Complex Adaptive Systems: An Introduction (Scator Verlag, Saarbriicken,
2002).

. H. Flyvbjerg, Phys. Rev. Lett. 76:940 (1996).
. J. Nagler, C. Hauert and H. G. Schuster, Phys. Rev. E 60:2706 (1999).

L. Gammaitoni, P. Hinggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70:223 (1998).
M. E. Fisher, J. Stat. Phys. 34:667 (1984).

. V. Frette, K. Christensen, A. Malthe-Sorensen, J. Feder, T. Jossang, and P. Meakin,

Nature 379:49 (1996).

. K. Christensen, A. Corral, V. Frette, J. Feder, and T. Jossang, Phys. Rev. Lett. 77:107

(1996).

. M. Kac, Random Walk and Theory of Brownian motion, American Math. Monthly, Vol. 54

no. (1947), e.g. in Selected Papers on Noise and Stochastic Processes, Dover Publications,
New York (1954).



